Color-Pattern Evolution in Response to Environmental Stress in Butterflies
نویسندگان
چکیده
It is generally accepted that butterfly wing color-patterns have ecological and behavioral functions that evolved through natural selection. However, particular wing color-patterns may be produced physiologically in response to environmental stress, and they may lack significant function. These patterns would represent an extreme expression of phenotypic plasticity and can eventually be fixed genetically in a population. Here, three such cases in butterflies are concisely reviewed, and their possible mechanisms of genetic assimilation are discussed. First, a certain modified color-pattern of Vanessa indica induced by temperature treatments resembles the natural color-patterns of its closely related species of the genus Vanessa (sensu stricto). Second, a different type of color-pattern modification can be induced in Vanessa cardui as a result of a general stress response. This modified pattern is very similar to the natural color-pattern of its sister species Vanessa kershawi. Third, a field observation was reported, together with experimental support, to show that the color-pattern diversity of a regional population of Zizeeria maha increased at the northern range margin of this species in response to temperature stress. In these three cases, modified color-patterns are unlikely to have significant functions, and these cases suggest that phenotypic plasticity plays an important role in butterfly wing color-pattern evolution. A neutral or non-functional trait can be assimilated genetically if it is linked, like a parasitic trait, with another functional trait. In addition, it is possible that environmental stress causes epigenetic modifications of genes related to color-patterns and that their transgenerational inheritance facilitates the process of genetic assimilation of a neutral or non-functional trait.
منابع مشابه
Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Drought stress in Lens culinaris L.
Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. In the course of evolution evolution, crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged in plant in response to drought and other abiotic stresses. In the present study, after identifying lncRNAs within the expression profile of lentil, RNA-s...
متن کاملWarning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies.
Visual signaling in animals can serve many uses, including predator deterrence and mate attraction. In many cases, signals used to advertise unprofitability to predators are also used for intraspecific communication. Although aposematism and mate choice are significant forces driving the evolution of many animal phenotypes, the interplay between relevant visual signals remains little explored. ...
متن کاملAssortative mating preferences among hybrids offers a route to hybrid speciation.
Homoploid speciation generates species without a change in chromosome number via introgressive hybridization and has been considered rare in animals. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has a color pattern that can be recreated by introgression of the H. melpomene red band into an H. cydno genetic backg...
متن کاملElements of butterfly wing patterns.
The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possibl...
متن کاملCool habitats support darker and bigger butterflies in Australian tropical forests
Morphology mediates the relationship between an organism's body temperature and its environment. Dark organisms, for example, tend to absorb heat more quickly than lighter individuals, which could influence their responses to temperature. Therefore, temperature-related traits such as morphology may affect patterns of species abundance, richness, and community assembly across a broad range of sp...
متن کامل